Numerical integration of related Hankel tiansforms by quadrature and continued fraction expansion
نویسنده
چکیده
An algorithm is presented for the accurate evaluation of Hankel (or Bessel) transforms of algebraically related kernel functions, defined here as the non-Bessel function portion of the integrand, that is more widely applicable than the standard digital filter methods without enormous increases in computational burden. The algorithm performs the automatic integration of the product of the kernel and Bessel functions between the asymptotic zero crossings of the latter and sums the series of partial integrations using a continued fraction expansion, equivalent to an analytic continuation of the series. The integrands may be saved to allow the rapid computation of related transforms without recalculating the kernel or Bessel functions, and the integration steps use interlacing quadrature formulas so that no function evaluations are wasted when it is necessary to increase the order of the quadrature rule. The continued fraction algorithm allows very slowly divergent or even formally divergent integrals to be computed quite easily. The local error is controlled at each step in the algorithm, and accuracy is limited largely by machine resolution. The algorithm is written in Fortran and is listed in an Appendix along with a driver program that illustrates its features. The driver program and subroutine are available from the SEG Business Offtce.
منابع مشابه
On : “ Numerical integration of related Hankel trans - forms by quadrature and continued fraction expansion ”
Chave presents an excellent algorithm and computer subprogram that evaluate Hankel transforms by quadrature and continued fraction summation. This subprogram would be a valuable addition to any mathematical computer library. Chave refers to digital filter (convolution) methods as “the standard numerical approach to the computation of Hankel transforms,” and makes numerous references to my publi...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملApplication of CAS wavelet to construct quadrature rules for numerical integration
In this paper, based on CAS wavelets we present quadrature rules for numerical solution of double and triple integrals with variable limits of integration. To construct new method, first, we approximate the unknown function by CAS wavelets. Then by using suitable collocation points, we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...
متن کاملAn Automatic Integration of Infinite Range Integrals Involving Bessel Functions
An efficient automatic quadrature procedure is developed for numerically computing the integrals 0 , where the function is smooth and nonoscillatory at infinity and is the Bessel functions of order ν =1,0 and 1/4. The procedure involves the use of an automatic integration scheme of modified FFT used for evaluating Fourier integrals and product type integration, and the modified W-transformation...
متن کاملTime integration of rectangular membrane free vibration using spline-based differential quadrature
In this paper, numerical spline-based differential quadrature is presented for solving the boundary and initial value problems, and its application is used to solve the fixed rectangular membrane vibration equation. For the time integration of the problem, the Runge–Kutta and spline-based differential quadrature methods have been applied. The Runge–Kutta method was unstable for solving the prob...
متن کامل